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Abstract 

This project addresses the statistical inverse problem of reconstruction of an uncertain 
shape of a scatterer or properties of a medium from noisy observations of scattered wave- 
fields. The Bayesian solution of this inverse problem yields a posterior pdf; requiring the 
solution of the forward wave equation to evaluate the density for any point in parameter 
space. The standard approach is to sample this pdf via an MCMC method and then com- 
pute statistics of the samples. However, standard MCMC methods view the underlying 
parameter-to-observable map as a black box, and thus do not exploit its structure, hence 
becoming prohibitive for high dimensional parameter spaces and expensive simulations. 

We have developed a Langevin-accelerated MCMC method for sampling high-dimensional 
PDE-based probability densities. The method builds on previous work in Langevin dynam- 
ics, which uses gradient information to guide the sampling in useful directions, improving 
convergence rates. We have extended the Langevin idea to exploit local Hessian informa- 
tion, leading to a stochastic version of Newton's method. We have also begun to analyze the 
spectral structure of the Hessian for inverse scattering problems. Applications to model in- 
verse medium scattering problems indicate several orders of magnitude improvement over 
a reference black-box MCMC method. 

Background 

The overall goal of this project is to create systematic, rigorous, and scalable algorithms for 
quantifying uncertainties in inverse wave scattering problems. These uncertainties reflect 
our incomplete knowledge of the medium in which the waves propagate (inverse medium 
scattering problem) or the shape of a scatterer (inverse shape scattering problem). The prob- 
lem of inferring an uncertain medium or shape from observations of scattered wavefields 
is fundamentally a statistical inverse problem. Our lack of knowledge results from noisy 
measurements, sparse observers, uncertain forward models, and uncertain prior model pa- 
rameter information. Uncertainty in the reconstructed model parameters is a fundamental 
feature of ill-posed inverse problems. 

The deterministic approach to the inverse scattering problem, which amounts to minimiz- 
ing a regularized data misfit function, is incapable of accounting for uncertainties in the 
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solution of the inverse problem. Bayesian inference provides a systematic framework for 
incorporating uncertainties in observations, forward models, and prior knowledge to quan- 
tify uncertainties in the model parameters. Suppose the relationship between output observ- 
ables y (such as waveforms at sensor locations) and uncertain model parameters p (such as 
those describing a wave speed of a heterogeneous medium or shape of a scatterer) is de- 
noted by y = f(p, e), where e represents noise due to measurement and/or modeling errors. 
In other words, given the model parameters p and noise e, the function f(p, e) solves the 
forward (acoustic, elastic, or electromagnetic wave propagation) problem to yield y, the 
predicted outputs at the measurement locations (and time instants). Suppose also that we 
have the prior probability density 7rprior(p), which encodes the confidence we have in prior 
information on the unknown model parameters (i.e. independent of present observations), 
and the likelihood function 7r(yobs|p), which describes the conditional probability that the 
model parameters p gave rise to the actual measurements y0bs- Then Bayes' theorem of in- 
verse problems expresses the posterior probability density of the model parameters, 7rpost, 
given the data y0bs, as the conditional probability 

7TPo8t(p) = 7r(p|yobs) oc 7rprior(p)7r(yobs|p). (1) 

Expression (1) provides the statistical solution of the inverse problem as a probability den- 
sity for the model parameters p. 

While it is easy to write down the expression (1) for the posterior probability density, 
making use of this expression poses a challenge, because the posterior probability density 
is a surface in high dimensions (equal to the number of model parameters p), and because 
the solution of the forward problem (i.e., computing f(p) given p) is required to evaluate 
the probability of any point in parameter space. Straightforward grid-based sampling is out 
of the question for anything other than a few parameters and cheap forward simulations. 
Special sampling techniques, such as Markov chain Monte Carlo (MCMC) methods, have 
been developed to generate sample ensembles that typically require many fewer points than 
grid-based sampling. Still, when the model parameters represent a (suitably-discretized) 
field (such as scatterer shape or medium wave speed), and when the forward PDE requires 
hours to solve on a parallel computer (such as mid-to-high frequency wave propagation), 
the MCMC framework becomes completely intractable. 

The central difficulty in scaling up conventional MCMC for large-scale forward simula- 
tions and high-dimensional parameter spaces is that this is a purely black-box approach, 
i.e. it does not exploit the structure of the parameter-to-observable map f(p). Twenty years 
of advances in algorithms for deterministic large-scale PDE-constrained optimization have 
taught us that making maximal use of derivative information can greatly speed up the search 
process for extremum points. The goal of this project is to overcome the intractability of 
conventional methods for statistical inverse scattering problems by developing scalable al- 
gorithms that exploit the structure of inverse wave propagation operators. Our work this 
year has focused on developing preconditioned Langevin methods that exploit this struc- 
ture to greatly speed up sampling. This has involved the analysis and construction of fast 
algorithms for approximating the inverse Hessian for inverse wave scattering problems. 



Status/Progress: Fast Hessian-preconditioned Langevin samplers (UT Austin) 

This past year we have been developing fast sampling methods that build on—and signifi- 
cantly extend—ideas from Langevin dynamics, which use gradient information to acceler- 
ate sampling of a target density. The Langevin equation is a stochastic differential equation, 

dPt = AV log TTpoetd* + V2A^2dWt, (2) 

with 7TPost(p) as an invariant density. Here, Wt is the i.i.d. vector of standard Brownian 
motions. Preconditioning by a symmetric positive definite operator A preserves the invari- 
ance of the density. In practice, we discretize in time with timestep A^, yielding (e.g. for 
explicit Euler) the update 

pk+l =Pk + AV log TTpo« At + V2ÄiAl/2tf(0,1) (3) 

where jV(0,/) is the i.i.d. standard normal density. Discretization in time can add bias, 
so we use the Langevin steps as proposals for the Metropolis-Hastings algorithm. The 
form (3) shows immediately the connection with deterministic optimization methods: the 
gradient term V log 7rpost is a steepest ascent direction for the posterior density. In its 
absence (and in the absence of preconditioning, i.e. A = I) we recover a Gaussian random 
walk from the last term in (2). The addition of the gradient term drives the sampling in (the 
locally steepest) direction of higher probability. However, steepest descent is a poor choice 
for search directions in large-scale optimization (particularly for anisotropic pdfs), and we 
seek to improve on it. 

Taking the preconditioner A as the inverse of the Hessian of log7rpost, we obtain the 
stochastic equivalent of Newton's method. In the common case of Gaussian additive noise 
and prior, the (negative) log of the posterior density is simply the "regularized" misfit func- 
tion (the sum of the data misfit and prior/regularization term) that deterministic inverse 
methods seek to minimize. Thus, similar to Newton's locally-quadratic approximation of 
the objective, the Hessian-preconditioned Langevin step makes a locally-Gaussian approxi- 
mation of 7TPost- This endows the sampling process with information on the curvature of the 
posterior density surface, which is crucial in high dimensions. We expect this to result in a 
need for substantially fewer sampling points relative to a black-box MCMC method, just as 
deterministic Newton requires substantially fewer iterations to find the optimum compared 
to a derivative-free optimization method. 

Moreover, it can be shown that in the limiting case when the posterior density npost is in 
fact Gaussian (e.g. when the inverse problem is linear and the noise is additive and Gaus- 
sian), this so-called stochastic Newton method not only samples the target density at long 
times, but accurately samples from 7rp0st at every time step. This means that the Metropolis- 
Hastings criterion will accept all of the proposed sample points, and that a minimum num- 
ber of points are needed to accurately sample from the given distribution. For densities 
that are not Gaussian, stochastic Newton will still provide a substantial speedup over a 
conventional random walk, since a Gaussian approximation (based on a local quadratic 
approximation of log 7rp0St, or equivalently a linearized approximation of the inverse prob- 
lem) will generally prove to yield more useful information on the behavior of 7rpost than a 
standard normal density approximation (or other heuristic) will. 



We have developed a preliminary implementation of the stochastic Newton method, and 
applied it to solve nonlinear inverse medium and shape scattering problems in one and 
two dimensions. For example, for a 65-parameter ID inverse medium problem, Figure 
1 indicates just O(102) samples are necessary to adequately sample the (non-Gaussian) 
posterior density, while a reference (non-derivative) MCMC method (Delayed Rejection 
Adaptive Metropolis (DRAM)) is nowhere near converged after even 0(1O5) samples. The 
performance of unpreconditioned Langevin MCMC is similar to that of DRAM, indicat- 
ing the crucial role of the Newton direction vs. steepest descent. Moreover, because the 
(inverse) Hessian captures the (local) covariance structure of the posterior density, this 
orders-of-magnitude speedup is expected to become even larger as the parameter dimen- 
sion increases. 
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Figure 1: Comparison of number of points taken for sampling posterior density for a 65-dimensional inverse 
scattering problem to identify the distribution of elastic moduli for a layered medium, from reflected waves. 
DRAM (black), unpreconditioned Langevin (blue), and Stochastic Newton (red) sampling methods are com- 
pared. Convergence indicator is multivariate potential scale reduction factor (MPSRF) for which a value of 
unity indicates convergence. Stochastic Newton requires three orders of magnitude fewer sampling points. 

Status/Progress: Fast approximations of Hessian operators (Georgia Tech) 

This past year we have also been working on fast approximations for Hessian operators, 
which are critical component of fast sampling algorithms for statistical inverse problems. 
Hessian operators are mainly determined by three characteristics of the inverse problem: 
the parameters, the underlying PDE, and the observation operator. Previously we have 
analyzed Hessians for definite elliptic and parabolic equations, for different observation 
operators for the inverse source and inverse medium problems (see publications). Recently 
we have started working with indefinite elliptic operators, namely the Helmholtz operator 
for inverse medium problems. We consider the problem of the inversion of the scalar wave 



equation in a lossy medium. In particular, we focus on broadband multi-point illumination 
problems for low frequency regimes. 

More specifically, we consider 

^9  / / -.du(r,t)        1    d2u(r,t) 
-^fl+^ + jjj-^-W (4) 

where u denotes the state, c the speed of sound, a viscous dissipation, and S the source 
term. If all variables are time-harmonic with a fixed angular frequency to, in the frequency 
domain Equation (4) becomes 

r LJ2 i 
-V2u(r) +   - tuwr(r) - -JJ-, u(r) = S(r,u). (5) 

L c2(r)J 

We wish to design a fast method for the recovery of either c(r) or a(r) from the values of the 
scattering data measured on Nd detectors. To generate the set of scattered measurements, 
a small number of point sources (Ns) will be considered. The positions of the sources will 
be denoted r^ (1 < i < Ns). For each source, we consider Nf frequencies to. 

We use an integral equation formulation for the forward problem and a Born approximation 
for the inverse problem, leading to an ill-posed linear least-squares problem. If Nf is 
the number of excitation frequencies, Ns the number of different locations for the point 
illuminations, Nd the number of detectors, and N the parametrization for the scatterer, a 
direct SVD will have 0((NaNdNf)2N) computational cost. We have developed a fast SVD 
method that, by introducing a controllable error in the factorization, brings this cost down 
to O(NfN) thus, providing orders of magnitude speed-up over the generic factorization 
algorithm. The fast SVD approach consists of the following components: a plane wave 
expansion of the forward operator; a fast randomized SVD for the single-source-many- 
frequencies problem; and a multi-step combination of the single source SVDs to construct 
the overall factorization. We are currently verifying and validating our method and are 
examining ways to extend it to higher frequency regimes. 
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